Monday, April 10, 2017

Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease


Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin

Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent. Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC. Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral 6 months group, 5/6 pigs in the oral 6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.



While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...

we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.

May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...

3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...

But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...

Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....

Porcine prion protein amyloid 

Per Hammarstr€om and Sofie Nystr€om* IFM-Department of Chemistry; Link€oping University; Link€oping, Sweden 

ABSTRACT. Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. 

Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. 

KEYWORDS. prion, pig, amyloid fibril, misfolding, transmissibility, seeding, TSE, prion strain, strain adaptation


What about pigs? In several recent papers which in our view have not received sufficient attention the notion of prion resistant pigs was challenged by generation of transgenic mice with knocked out endogenous PrP and overexpressed PoPrP. Different lines of tgPoPrP mouse were proven to be susceptible to clinical disease triggered by a variety of prion strains, suggesting that the surrogate host species (mouse) and prion strain are more important than what PrP sequence it expresses for neurotoxicity to commence. In more detail, Torres and colleagues experimentally subjected transgenic mouse lines expressing porcine PrP to a number of different TSE isolates.24-26 Their studies demonstrate that prion infection is strain specific when porcine PrP is overexpressed (4x) and used as in vivo substrate. PoTg001 mice inoculated with classical scrapie, regardless of donor genotype, resisted prion disease both at first and second passage (Fig. 3b). On the other hand, Nor98 scrapie (Atypical scrapie) as well as BSE from both cattle and BoTg mouse model resulted in clinical disease in the PoTg001 mice. However, in the first generation, disease progression was slow. Incubation time until death was as long as 600 d and the hit rate was low. This indicates that disease has barely developed by the time the mice reach their natural life span limit which in this study was set to 650 d Already in the second passage the hit rate was 100 % and the incubation time was cut in half (Fig. 3b). No further shortening of incubation time was observed upon third passage. This shows that PoPrP is capable of forming infectious and neurotoxic prions in vivo if triggered by a compatible prion strain and if given enough time to develop. Both BSE and Nor98 rapidly adapts to the PoPrP host sequence, resulting in higher penetrance as well as in markedly shorter life span already in the second passage, well within the limits of normal life span for a mouse.

There are several crucial variables which impact the susceptibility of prion diseases and transmission studies.27 PrP sequence of host, PrP sequence of prion, prion strain, prion dosage, PrP expression level of host, host genetic background, route of transmission and neuroinvasiveness if peripherally infected.28 Importantly the PrP expression level corresponds to the rate of prion disease onset.1 This likely reflects 2 converging variables: a) PrP as a substrate to the prion misfolding reaction i.e. selfcatalyzed conversion and b) PrP as a mediator of neurotoxicity through interactions with misfolded PrP within prions.

The non-homologous recPrPs presented here and in,12 easily adapt to each other and form amyloid fibrils in accordance with what is seen in vivo when inoculum composed of BoPrP used to challenge mice expressing PoPrP (Fig. 3b).24-26 A review of the literature showed that BSE strains have a high degree of penetrance in both experimental and accidental transmission. Over 50% of the species reported to be susceptible to prion disease were infected by a BSE strain.19 Recent data form our lab shows that the promiscuity of BoPrP fibrils holds true also in the case of recombinant in vitro experiments. When cross-seeding human, bovine, porcine, feline and canine PrPs with any of the other, the recBoPrP seed outcompetes the other seeds in all instances except when the HuPrP acted as substrate (Data not shown). In this case recPoPrP fibrils have the highest seeding efficiency (Fig. 1). These findings in combination with the Torres experiments,24-26 implicate that a PoPrP substrate in vivo (in pigs) could adapt to an amyloidogenic prion strain of bovine or ovine prion disease and hence replicate in the new host.

For adaptation of experimental strains through multiple passages, donors are selected based on neurotoxicity (that is on TSE disease phenotype) not on basis of amyloid fibril formation. Hence the traits of transmissible amyloidotypic prion strains may be largely unexplored if these strains require more time to transform to neurotoxic strains e.g. as proposed by Baskakov’s model of deformed templating.8 There is experimental evidence for BSE transmission into pig via parenteral routes.16 with an incubation period of 2–3 years, well within what is to be considered normal lifespan. For a breeding sow in industrial scale pig farming that is 3–5 y (Bojne Andersson, personal communication).29,30 In small scale and hobby farming both sows and boars may be kept significantly longer. Collinge and Clarke.31 describe how prion titers reach transmissibility levels well before the prion burden is high enough to be neurotoxic and cause clinical disease. It is known that prion strains need time and serial passages to adapt. Knowing that pigs in modern farming are rarely kept for enough time for clinical signs to emerge in prion infected pigs it is important to be vigilant if there is a sporadic porcine spongiform encephalopathy (PSE) as has been seen in cattle (BASE) and sheep (Nor98). Hypothetically such a sporadic and then infectious event could further adapt and over a few generations have reached the point where clinical PSE is established within the time frame where pigs are being slaughtered for human consumption (Fig. 4).

FIGURE 4. Potential prion strain adaptation in pig. The red horizontal gradient indicates the hietherto unkown prion toxicity tolerance threshold for pigs, the blue vertical line indicates normal slaughter age for industrial pig farming, the green vertical line indicates the normal lifespan of a breeding sow in industrial scale pig farming, orange areas indicate window of neurotoxic prions before onset of clinical disease (dark orange indicates subclinical BSE as reported by Wells et al,16 pale orange indicate hypothetic outcome of PSE and strain adaptation. On the outmost right a potential subclinical sporadic PSE.


The pig is the most versatile species used by humans for food and other applications. Over 1,5 billion pigs are slaughtered each year worldwide for human use.32 Besides juicy pork sirloin other parts from pig are used for making remarkably diverse things such as musical instruments, china, leather, explosives, lubricants etc. Pig offal is used for human medicine, e.g., hormone preparations such as insulin and cerebrolysin, in xenographs, sutures, heparin and in gelatin for drug capsules.33,34

And that means not only pork, it means your pigskin wallet, catgut surgical tallow, in butter. It is undoubtedly in the blood supply. DC Gajdusek (From R. Rhodes ''Deadly Feast'' 35)

While the late Carleton Gajdusek had strong views in diverse areas of prion biology, according to journalist Richard Rhodes,35 he was correct on his prediction on BSE prions (vCJD) in the blood supply18 (see text box above). An opinionated scientist can sometimes be ignored due to a judgment of character and Gajdusek was certainly provocative. Notwithstanding society should remain vigilant on the possibility that Gajdusek was also prophetic on porcine prions given the exceptionally wide spread use of pigs in everyday human life and medicine. As discussed previously it is currently not established what relations transmissible neurotoxic prion strains and amyloid morphotypic mature APrP strains have. Given the hypotheses that amyloidotypic PrP conformations can transmit with low neurotoxicity.7,36 it is interesting to reflect on possible implications. Pigs are slaughtered at 6–8 months of age. Because amyloid deposition is associated with old age, this is likely far too young for spontaneous development of APrP amyloid from PoPrP as well as other amyloidogenic proteins. From the perspective of seeded amyloidogenesis it is however a potential ideal case for highly transmissible titers of APrP (Fig. 4). In such a scenario the potential of porcine prions constitutes the perfect storm, clinically silent due to neurotoxic resistance and with high titers of transmissibility. When it comes to prions CNS material is most heavily infected. In addition, however, fat tissue (to make lard and tallow) is known to harbor extraordinary amounts of amyloid in systemic amyloidoses.37 Amyloid fibrils of misfolded large proteins (AA, AL, ATTR) are notoriously hydrophobic due to the abnormal exposure of hydrophobic residues which normally in the folded structure being hidden in the protein core. The amyloid accumulation in fat tissue is likely a phase-separation from a rather hydrophilic environment in circulation toward the hydrophobic environment provided by adipocytes. Adipose tissue could in addition represent an in vivo environment well suitable for fibril formation. What about APrP?

In analysis of mice expressing Glycophosphatidylinositol, (GPI)-anchorless PrP, abdominal fat contains appreciable amounts of infectious prions in APrP isoform stained with ThS.38 Notably mice overexpressing anchorless PrP provides a silent carrier status for a long time prior to presenting symptoms and is severely afflicted by amyloid fibril formation following scrapie (RML) infection.39 Recall that this study showed that GPI-anchored PrP is needed to present clinical neurotoxicity. Evidently circulating anchorless-PrP (analogous to recPrP) is more amyloidogenic compared to GPI-anchored PrP and is poorly neuroinvasive.28 Amyloidosis is systemic in anchorless-PrP mice and is not limited to fat but is also found as extensive cardiac amyloid deposits.39 Interestingly cardiac APrP was recently reported in one BSE inoculated rhesus macaque which showed symptoms of cardiac distress prior to death from prion neurotoxicity.40 It is noteworthy that transgenic mice expressing PoPrP appear sensitive to strains with biochemical features of amyloidogenic prion strains i.e., BSE and Nor98.25,26,36 (Fig. 3b). We recently adopted the parallel inregister intermolecular b-sheet structural model of the APrP fibril from the Caughey lab to rationalize cross-seeding between various PrP sequences.12,41 It is tempting to use this structural model to speculate on the adaptation of mono-N-glycolsylated PoPrP at the expense of double-N-glycolylated PrP in the original BSE inoculum reported in the Torres experiments.25,26 In this APrP model monoglycosylated PrP at N197 is structurally compatible while N181 is not, due to burial in the in-register intermolecular cross-beta sheet (Fig. 5).

It appears that amyloidotypic prion strains, APrP, are transmissible but associated with lower neurotoxicity compared to diffuse aggregated PrP associated with synaptic PrP accumulations. It is possible that the amino acid substitutions in PoPrP compared to HuPrP and BoPrP are important for neurotoxic signal transmission (Fig. 2b, 5). The main issue hereby is that transmissibility of APrP will remain undetected unless used for surveillance. AA amyloidosis is frequent in many animals (e.g. cattle and birds) but is exceptionally rare in pigs.42 suggesting that APrP should it reside in pig fat would be traceable using newly developed screening methods.37


Should the topic of porcine PrP amyloid be more of a worry than of mere academic interest? Well perhaps. Prions are particularly insidious pathogens. A recent outbreak of peripheral neuropathy in human, suggests that exposure to aerosolized porcine brain is deleterious for human health.43,44 Aerosolization is a known vector for prions at least under experimental conditions.45-47 where a mere single exposure was enough for transmission in transgenic mice. HuPrP is seedable with BoPrP seeds and even more so with PoPrP seed (Fig. 1), indicating that humans could be infected by porcine APrP prions while neurotoxicity associated with spongiform encephalopathy if such a disease existed is even less clear. Importantly transgenic mice over-expressing PoPrP are susceptible to BSE and BSE passaged through domestic pigs implicating that efficient downstream neurotoxicity pathways in the mouse, a susceptible host for prion disease neurotoxicity is augmenting the TSE phenotype.25,26 Prions in silent carrier hosts can be infectious to a third species. Data from Collinge and coworkers.21 propose that species considered to be prion free may be carriers of replicating prions. Especially this may be of concern for promiscuous prion strains such as BSE.19,48 It is rather established that prions can exist in both replicating and neurotoxic conformations.49,50 and this can alter the way in which new host organisms can react upon cross-species transmission.51 The na€ıve host can either be totally resistant to prion infection as well as remain non-infectious, become a silent non-symptomatic but infectious carrier of disease or be afflicted by disease with short or long incubation time. The host can harbor and/or propagate the donor strain or convert the strain conformation to adapt it to the na€ıve host species. The latter would facilitate infection and shorten the incubation time in a consecutive event of intra-species transmission. It may be advisable to avoid procedures and exposure without proper biosafety precautions as the knowledge of silence carrier species is poor. One case of iatrogenic CJD in recipient of porcine dura mater graft has been reported in the literature.52 The significance of this finding is still unknown. The low public awareness in this matter is exemplified by the practice of using proteolytic peptide mixtures prepared from porcine brains (Cerebrolysin) as a nootropic drug. While Cerebrolysin may be beneficial for treatment of severe diseases such as vascular dementia,53 a long term follow-up of such a product for recreational use is recommended.


No potential conflicts of interest were disclosed


This work was supported by G€oran Gustafsson foundation, the Swedish research council Grant #2011-5804 (PH) and the Swedish Alzheimer association (SN).


TUESDAY, APRIL 18, 2017 


WEDNESDAY, MAY 17, 2017 


snip... see much more here ;


Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Terry S. Singeltary Sr.

Bacliff, Texas USA 77518


No comments:

Post a Comment

Note: Only a member of this blog may post a comment.